王晓峰老师的多元微积分作业

本文最后更新于:2022年3月6日 晚上

pour l'honneur de l'esprit humain ! —— Nicolas Bourbaki

春季学期 微积分A2 王晓峰老师

未央能动12 罗诗棋 2021012525

习题1.7

1.(1) 解:对 \(z=x^2+y^2\) ,有 \(\dfrac{\partial z}{\partial x}|_P=2,\dfrac{\partial z}{\partial y}|_P=4\) 。因此切平面: \[ 2x+4y-z-5=0 \] 法线方程: \[ \frac{x-1}{2}=\frac{y-2}{4}=5-z \] 1.(3) 解:对 \(F(x,y,z)=(2a^2-z^2)x^2-a^2y^2=0\) ,有 \(\dfrac{\partial F}{\partial x}|_P=2a^3\),\(\dfrac{\partial F}{\partial y}|_P=2a^3\),\(\dfrac{\partial F}{\partial z}|_P=-2a^3\) 切平面: \[ x+y-z-a=0 \] 法线方程: \[ x-a=y-a=a-z \] 1.(6) 解:对此函数,首先写出参数形式的切平面: \[ \begin{cases}x=u+v\\y=2u+4v-5\\z=3u+12v-18\end{cases} \] 消去 \(u,v\) 后得到 \[ -12x+9y-2z+9=0 \] 法线方程: \[ -\frac{x-3}{12}=\frac{y-5}{9}=-\frac{z-9}{2} \] 5. 解:先求两个曲面在 \(P\) 点的切平面方程: \[ \begin{cases}2(x-1)-4(y+2)+2(z-1)=0\\x+y+z=0\end{cases} \] 得到切线方程: \[ x-1=1-z,y+2=0 \] 法平面方程: \[ x-z=0 \] 7. 证明:过直线 \(l\) 做不与切平面 \(S\) 重合的平面 \(T\)\(T\) 与曲面 \(f(x,y,z)=0\) 有公共点 \(P\) 且不是其切平面,因此能够交于空间曲线 \(m\) 。则 \(m\)\(l\) 在同一平面上,且 \(l\)\(f(x,y,z)=0\) 的切平面上,因此 \(l\)\(m\) 的切线。由于总能找到这样的直线 \(m\) ,命题成立。

另证:切平面为 \(\dfrac{\partial f}{\partial x}|_P(x-x_0)+\dfrac{\partial f}{\partial y}|_P(y-y_0)+\dfrac{\partial f}{\partial z}|_P(z-z_0)=0\) ,不妨设直线 \(l\) 的方程为 \[ \frac{x-x_0}{\dfrac{\partial f}{\partial x}|_P}A=\frac{y-y_0}{\dfrac{\partial f}{\partial y}|_P}B=\frac{z-z_0}{\dfrac{\partial f}{\partial z}|_P}(-A-B) \] 设过 \(l\) 的另一个平面 \(T\)\[ C\dfrac{\partial f}{\partial x}|_P(x-x_0)+D\dfrac{\partial f}{\partial y}|_P(y-y_0)+\frac{AC+BD}{A+B}\dfrac{\partial f}{\partial z}|_P(z-z_0)=0 \] 此平面与 \(f(x,y,z)=0\) 交于空间曲线 \(m\)\(m\)\(P\) 的切线满足 \[ \begin{cases}\dfrac{\partial f}{\partial x}|_P(x-x_0)+\dfrac{\partial f}{\partial y}|_P(y-y_0)+\dfrac{\partial f}{\partial z}|_P(z-z_0)=0\\ C\dfrac{\partial f}{\partial x}|_P(x-x_0)+D\dfrac{\partial f}{\partial y}|_P(y-y_0)+\dfrac{AC+BD}{A+B}\dfrac{\partial f}{\partial z}|_P(z-z_0)=0\end{cases} \] 整理后恰为 \(\dfrac{x-x_0}{\dfrac{\partial f}{\partial x}|_P}A=\dfrac{y-y_0}{\dfrac{\partial f}{\partial y}|_P}B=\dfrac{z-z_0}{\dfrac{\partial f}{\partial z}|_P}(-A-B)\) ,即 \(l\)\(m\) 的切线。

习题1.8

1.(3) 解:对 \(u=\ln(1+x+y+z)\),有\(\dfrac{\partial u}{\partial x}=\dfrac{\partial u}{\partial y}=\dfrac{\partial u}{\partial z}=\dfrac{1}{1+x_0+y_0+z_0}\) ,进而有 \[ H(x,y,z)=\begin{bmatrix} \frac{\partial^2 u}{\partial x^2} & \frac{\partial^2 u}{\partial x \partial y} & \frac{\partial^2 u}{\partial x \partial z} \\ \frac{\partial^2 u}{\partial y \partial x} & \frac{\partial^2 u}{\partial y^2} & \frac{\partial^2 u}{\partial y \partial z} \\ \frac{\partial^2 u}{\partial x \partial z} & \frac{\partial^2 u}{\partial y \partial z} & \frac{\partial^2 u}{\partial z^2}\end{bmatrix}=-\frac{1}{(1+x_0+y_0+z_0)^2}\begin{bmatrix} 1&1&1\\1&1&1\\1&1&1 \end{bmatrix} \] 代入 \(x_0=y_0=z_0=0\) 可得该函数在点O处带有二阶Peano余项的Taylor公式: \[ u=x+y+z-\frac{1}{2}(x+y+z)^2+o(x^2+y^2+z^2) \] 以及相应的带有Lagrange余项的Taylor公式: \[ u=x+y+z-\frac{1}{2[1+\theta(x+y+z)]}(x+y+z)^2\,,where\ 0<\theta<1 \] 2.(1) 解:对 \(z=x^y=e^{y\ln x}\)\[ \frac{\partial z}{\partial x}|_{(1,1)} =\frac{y}{x}x^y|_{(1,1)}=1,\frac{\partial z}{\partial y}|_{(1,1)}=x^y\ln x|_{(1,1)}=0 \] 进而有 \[ H(1,1)=\begin{bmatrix}\frac{y(y-1)}{x^2}x^y & \frac{1+y\ln x}{x}x^y \\ \frac{1+y\ln x}{x}x^y & x^y \ln^2 x\end{bmatrix}|_{(1,1)}=\begin{bmatrix}0&1\\1&0\end{bmatrix} \] 又有 \[ \begin{gathered} \frac{\partial^3 z}{\partial x^3}|_{(1,1)}=\frac{2y(y-1)^2}{x^3}x^y|_{(1,1)}=0 ,\\ \frac{\partial^3 z}{\partial x^2 \partial y}|_{(1,1)}=\frac{2y-1+(y^2-y) \ln x}{x^2}x^y|_{(1,1)}=1\\ \frac{\partial^3 z}{\partial x \partial y^2}|_{(1,1)}=\frac{y \ln x+2}{x}x^y\ln x|_{(1,1)}=0,\\ \frac{\partial^3 z}{\partial y^3}|_{(1,1)}=x^y\ln^3x|_{(1,1)}=0 \end{gathered} \]\(z=x^y\)\((1,1)\)的三阶Taylor多项式为: \[ z=1+(x-1)+(x-1)(y-1)+\frac{1}{2}(x-1)^2(y-1) \] 代入 \(x=1.1,y=1.02\) 得, \[ 1.1^{1.02}\approx1.1021 \] (2) 解:对 \(z=\dfrac{\cos x}{\cos y}\) ,有 \[ \frac{\partial z}{\partial x}|_{(0,0)}=\frac{-\sin x}{\cos y}|_{(0,0)}=0\ ,\frac{\partial z}{\partial y}|_{(0,0)}=\frac{\cos x \sin y}{\cos^2y}|_{(0,0)}=0 \] 进而有 \[ H(0,0)=\begin{bmatrix}-\frac{\cos x}{\cos y}&-\frac{\sin x\sin y}{\cos^2y}\\-\frac{\sin x\sin y}{\cos^2y}&\frac{\cos x(\sin^2y+1)}{\cos^3y}\end{bmatrix}|_{(0,0)}=\begin{bmatrix}-1&0\\0&1\end{bmatrix} \] 因此 \(z=\dfrac{\cos x}{\cos y}\)\((0,0)\) 处的二阶Taylor多项式为 \[ z=1+\frac{1}{2}(-x^2+y^2) \] (3) 解:对 \(z=e^{-x}\ln(1+y)\) ,有 \[ \frac{\partial z}{\partial x}=-e^{-x}\ln(1+y)=0,\frac{\partial z}{\partial y}=\frac{e^{-x} }{1+y}=1 \] 以及 \[ \frac{\partial^2 z}{\partial x^2}=e^{-x}\ln(1+y)=0,\frac{\partial^2 z}{\partial y\partial z}=-\frac{e^{-x} }{1+y}=-1,\frac{\partial^2 z}{\partial y^2}=-\frac{e^{-x} }{(1+y)^2}=-1 \] 由此得到 \(z=e^{-x}\ln(1+y)\)\((0,0)\) 的二阶Taylor多项式: \[ \begin{aligned} z&=0+(x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y})z+\frac{1}{2}(x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y})^2z\\&=y-xy-\frac{1}{2}y^2 \end{aligned} \]

习题1.9

1.(2) 解:先求函数的临界点。 \[ \begin{cases} \dfrac{\partial z}{\partial x}=e^{2x}(2x+2y^2+2y+1)=0\\ \dfrac{\partial z}{\partial y}=e^{2x}(2y+2)=0 \end{cases} \] 解得临界点\((-\dfrac{1}{2},-1)\)。考察函数在此处的Hesse矩阵: \[ H(-\frac{1}{2},-1)=\begin{bmatrix}\frac{2}{e}&-\frac{2}{e}\\-\frac{2}{e}&\frac{2}{e}\end{bmatrix} \] 此矩阵特征值只有0,无法判断是否是极值点。继续求四阶偏导数: \[ \frac{\partial^4 z}{\partial x^4}=\frac{\partial^4 z}{\partial x^3\partial y}=\frac{\partial^4 z}{\partial x\partial y^3}=\frac{\partial^4 z}{\partial y^4}=0,\frac{\partial^4 z}{\partial x^2\partial y^2}=\frac{8}{e} \] 即在 \((-\dfrac{1}{2},-1)\) 附近z的Taylor级数为 \(z=-\dfrac{2}{e}+\dfrac{2}{e}x^2y^2+o((x+y)^4)\)。如此看来,\((-\dfrac{1}{2},-1)\) 是极小值点,极小值为 \(\dfrac{2}{e}\) ,无极大值点。

另解:\(z=e^{2x}[x+(y+1)^2-1]\geq e^{2x}(x-1)\geq -\dfrac{2}{e}\) ,而 \(z(-\dfrac{1}{2},-1)=-\dfrac{2}{e}\) ,所以 \((-\dfrac{1}{2},-1)\) 必为极小值点,极小值为 \(\dfrac{2}{e}\)

(3) 求函数的临界点: \[ -\cos(x+y+z)+\cos(x,y,z)=0 \] 可以得到唯一临界点:\((\dfrac{\pi}{2},\dfrac{\pi}{2},\dfrac{\pi}{2})\) 。在此处函数的Hesse矩阵为 \[ H(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2})=\begin{bmatrix}-2&-1&-1\\-1&-2&-1\\-1&-1&-2\end{bmatrix} \] 此矩阵特征值为-1和-4,是负定的。因此函数在\((\dfrac{\pi}{2},\dfrac{\pi}{2},\dfrac{\pi}{2})\)为极大值点,极大值为4,无极小值点。

2. 解:对曲面 \(f(x,y,z)=2x^2+2y^2+z^2+8xz-z+8=0\) ,题目所求处必有切平面与 \(xOy\) 平面平行,即 \[ \frac{\partial f}{\partial x}=4x+8z=0\\ \frac{\partial f}{\partial y}=4y=0 \] 三式联立得到临界点坐标 \((-2,0,1),(\dfrac{16}{7},0,-\dfrac{8}{7})\)

计算两点的Hesse矩阵: \[ H(-2,0,1)=\begin{bmatrix}-\dfrac{4}{15}&0\\0&-\dfrac{4}{15}\end{bmatrix},H(\dfrac{16}{7},0,-\dfrac{8}{7})=\begin{bmatrix}\dfrac{4}{15}&0\\0&\dfrac{4}{15}\end{bmatrix} \] 分别为负定和正定,即分别为极大值和极小值。因此 \(z(x,y)\) 有极小值 \(-\dfrac{8}{7}\) ,极大值 \(1\)

4.(1) 解:进行换元,令 \(u=x^2,v=y^2\) ,有 \(z=(u+2v)e^{-u-v}\) ,且 \(u,v\geq0\)

求函数的临界点: \[ \begin{cases} e^{-u-v}(1-u-2v)\cdot2x=0\\ e^{-u-v}(2-u-2v)\cdot2y=0 \end{cases} \] 求得的临界点有:\((0,0),(0,\pm1),(\pm1,0)\) ,函数在这些点的值分别为 \(0,\dfrac{2}{e},\dfrac{1}{e}\) 。当 \(x\to\infty或y\to\infty\) 时, \(z\to0\) 。因此,该函数最大值为 \(\dfrac{2}{e}\) ,最小值为 \(0\)

(2) 解:最值点必然是内部或边界的极值点,或是顶点。

内部的极值点满足: \[ \begin{cases} \ y(4-2x-y)=0\\ \ x(4-x-2y)=0 \end{cases} \] 求得区域内临界点有 \((0,4),(\frac{4}{3},\frac{4}{3})\) ,函数值分别为 \(0,\dfrac{64}{27}\)

对边界 \(x+y=6\) , \(z=-2xy\) ,易知 \(x=y=3\) 时取极值 \(-18\) 。对边界 \(y=0\) , \(z=0\) 。对边界 \(x=1\) , \(z=y(3-y)\) ,知 \(y=\dfrac{3}{2}\) 时取极值 \(\dfrac{9}{4}\) 。三个顶点的函数值分别为 \(0,0,-10\)

综上所述,函数在 \((\dfrac{4}{3},\dfrac{4}{3})\) 取最大值 \(\dfrac{64}{27}\) ,在 \((3,3)\) 取最小值 \(-18\)

14. 解:设营业额 \(S\) 与月份 \(x\) 之间的拟合关系是 \(S(x)=ax^2+bx+c\) 。即求下式的最小值: \[ ||\begin{bmatrix}1&1&1\\4&2&1\\9&3&1\\16&4&1\\25&5&1\end{bmatrix}\begin{bmatrix}a\\b\\c\end{bmatrix}-\begin{bmatrix}4.0\\4.4\\5.2\\6.4\\8.0\end{bmatrix} ||^2=||\rm{A}\mathbf x-\mathbf b||^2 \] 由最小二乘法, \(\mathbf x=\rm{(A^TA)}^{-1}A^T\mathbf b=\begin{bmatrix}0.2\\-0.2\\4\end{bmatrix}\) ,即 \(S=0.2x^2-0.2x+4\) 。预测12月份营业额为 \(30.4\) 百万元。

第一章总复习题

16. 解:由Lagrange乘子法可知,问题等价于求函数 \(g(x,y,\lambda)=\dfrac{1}{p}x^p+\dfrac{1}{q}y^q-\lambda(xy-1)\) 的最小值。先求其临界点: \[ \begin{gathered} \frac{\partial g}{\partial x}=x^{p-1}-\lambda y=0\\ \frac{\partial g}{\partial y}=y^{q-1}-\lambda x=0 \end{gathered} \] 解得 \(x^p=y^q\) ,即 \(x=y=1\) 。此时 \(\dfrac{1}{p}x^p+\dfrac{1}{q}y^q\) 有最小值 \(\dfrac{1}{p}+\dfrac{1}{q}=1=xy\) ,题式得证。

对于Young不等式的情况,只需变为求函数 \(g^{'}(x,y)=\dfrac{1}{p}x^p+\dfrac{1}{q}y^q-xy\) 的最小值。先求临界值: \[ \begin{gathered} \frac{\partial g^{'} }{\partial x}=x^{p-1}-y=0\\ \frac{\partial g^{'} }{\partial y}=y^{q-1}-x=0 \end{gathered} \] 同可解得 \(x^p=y^q=xy\) ,易知此为最小值点。代入原式得 \(g^{'}(x,y)\) 的最小值为 \((\dfrac{1}{p}+\dfrac{1}{q}-1)xy=0\) ,Young不等式得证。

17. 解:由题意知,线段 \(PQ\) 是距离,应在 \(f\)\(P\) 点和 \(g\)\(Q\) 点的法线上。由于法线的斜率恰应为 \(\dfrac{f'_1(a,b)}{f'_2(a,b)}\)\(\dfrac{g'_1(c,d)}{g'_2(c,d)}\) ,而 \(PQ\) 的斜率为 \(\dfrac{a-c}{b-d}\) ,题式得证。

现求 \(x^2+2xy+5y^2-16y=0\)\(x-y-8=0\) 的距离。设距离线段与两曲线的交点分别为 \(P(a,b),Q(c,d)\) ,由前式有 \[ \frac{a-c}{b-d}=\frac{2a+2b}{2a+10b-16}=-1 \] 联立函数方程解得 \(P(-2\mp3\sqrt 2,2\pm\sqrt 2),Q(4\mp\sqrt 2,-4\mp\sqrt 2)\) ,对应的距离分别是 \(\pm4+6\sqrt 2\) 。应取较小的 \(6\sqrt{2}-4\)

讲义习题3.4

2. 解:设 \(X_i=\dfrac{x_i^p}{\sum \limits_{i=1}^{n}x_i^p},Y_i=\dfrac{y_i^q}{\sum \limits_{i=1}^{n}y_i^q}\) ,由Young不等式有 \(\dfrac{1}{p}X_i+\dfrac{1}{q}Y_i\geq X_i^{\frac{1}{p} }Y_i^{\frac{1}{q} }\) ,将 \(i\)\(1\)\(n\) 求和加起来就得到了 \((\sum \limits_{i=1}^{n}x_i^p)^{\frac{1}{p} }+(\sum \limits_{i=1}^{n}y_i^q)^{\frac{1}{q} }\geq \sum \limits_{i=1}^{n}x_i y_i\)

等号成立要求对每个 \(i\)\(\dfrac{1}{p}X_i+\dfrac{1}{q}Y_i= X_i^{\frac{1}{p} }Y_i^{\frac{1}{q} }\) 成立,也就是 \(X_i=Y_i\) 成立。这等价于要求,\(\{x_1,x_2,...,x_n\}\)\(\{y_1,y_2,...,y_n\}\) 线性相关。

习题2.1

4. 解:

  1. \(\displaystyle f(2n,t)=\int_0^{+\infty}{x^{2n}e^{-tx^2}{\rm d}x}\) ,由于 \[ f(2n,t)=-\frac{1}{2t}\int_0^{+\infty}{x^{2n-1}{\rm d}{e^{-tx^2} }} =\frac{2n-1}{2t}f(2n-2,t) \]\(\displaystyle f(2n,t)=\frac{(2n)!}{(4t)^n n!}f(0,t)=\frac{(2n)!}{2(4t)^n n!}\sqrt{\frac{\pi}{t} }\) 说明该积分收敛,但 \[ \forall \varepsilon>0, \]

习题2.2

2. 解:(1) 对 \(\displaystyle F(x)=\int_x^{x^2}{\rm e}^{-xy^2}\rm d\it y\) ,有 \[ \begin{aligned} F'(x)&=\int_x^{x^2}{\frac{\partial}{\partial x}{\rm e}^{-xy^2}\rm d\it y}+(x^2)'{\rm e}^{-x^5}-(x)'{\rm e}^{-x^3}\\ &=\int_x^{x^2}-y^2{\rm e}^{-xy^2}{\rm d}y+2x{\rm e}^{-x^5}-{\rm e}^{-x^3} \end{aligned} \] (2) 对 \(\displaystyle F(y)=\int_{a+y}^{b+y}{\frac{\sin yx}{x}{\rm d}x}\) ,有: \((y\neq0)\) \[ \begin{aligned} F'(y)&=\int_{a+y}^{b+y}{\frac{\partial}{\partial y}\frac{\sin yx}{x}{\rm d}x}+\frac{\sin(y(b+y))}{b+y}-\frac{\sin(y(a+y))}{a+y}\\ &=\int_{a+y}^{b+y}{\cos yx{\rm d}x}+\frac{\sin(y(b+y))}{b+y}-\frac{\sin(y(a+y))}{a+y}\\ &=(\frac{1}{y}+\frac{1}{b+y})\sin(y(b+y))-(\frac{1}{y}+\frac{1}{a+y})\sin(y(a+y)) \end{aligned} \] 若是 \(y=0\) 的情况,有: \[ \begin{aligned} F'(0)&=\lim \limits_{y\to0}{(\frac{1}{y}+\frac{1}{b+y})\sin(y(b+y))-(\frac{1}{y}+\frac{1}{a+y})\sin(y(a+y))}\\ &=b-a \end{aligned} \] 若是 \(y=-b\)\(y=-a\) 的情况,同样可以由求极限的方法得到: \[ \begin{gathered} F'(-b)=-b+(\frac{1}{b}+\frac{1}{b-a})\sin(b(b-a))\\ F'(-a)=a-(\frac{1}{a}+\frac{1}{a-b})\sin(a(a-b)) \end{gathered} \] (3) 对 \(\displaystyle F(t)=\int_0^t{\frac{\ln(1+tx)}{x}{\rm d}x}\) ,有:\((t\neq0)\) \[ \begin{aligned} F'(t)&=\int_0^t{\frac{\partial}{\partial t}\frac{\ln(1+tx)}{x}{\rm d}x}+\frac{\ln(1+t^2)}{t}\\ &=\frac{2\ln(1+t^2)}{t} \end{aligned} \] 若是 \(t=0\) 的情况,有 \[ F'(t)=\lim \limits_{t\to0}{\frac{2\ln(1+t^2)}{t} }=0 \] (4) 对 \(\displaystyle F(t)=\int_0^t{f(x+t,x-t){\rm d}x},f\in C'\) 中的 \(f(x+t,x-t)\) 做变量代换,以 \(x,t\) 为变量,则有 \(\dfrac{\partial f}{\partial t}=\dfrac{\partial f}{\partial(x+t)}-\dfrac{\partial f}{\partial(x-t)}\)\[ \begin{aligned} F'(t)&=\int_0^t{\frac{\partial}{\partial t}f(x+t,x-t){\rm d}x}+f(2t,0) \\&=\int_0^t{\dfrac{\partial f}{\partial(x+t)}-\dfrac{\partial f}{\partial(x-t)}{\rm d}x}+f(2t,0) \end{aligned} \] 4. 证明:设 \(p=x+at,q=x-at\) ,由链锁法则有 \[ \frac{\partial \varphi}{\partial t}=a(\frac{\partial \varphi}{\partial p}-\frac{\partial \varphi}{\partial q})\\ \frac{\partial \varphi}{\partial x}=\frac{\partial \varphi}{\partial p}+\frac{\partial \varphi}{\partial q} \]

又因 \(\varphi\in C^2,\psi\in C^1\) ,有: \[ \begin{gathered} \frac{\partial u}{\partial t}=\frac{1}{2}a(\frac{\partial \varphi(p)}{\partial p}-\frac{\partial \varphi(p)}{\partial q}+\frac{\partial \varphi(q)}{\partial p}-\frac{\partial \varphi(q)}{\partial q})+\frac{1}{2}\int_q^p{\frac{\partial \psi}{\partial p}-\frac{\partial \psi}{\partial q}{\rm d}s}\\ \begin{aligned} \frac{\partial^2 u}{\partial t^2}=& \ \frac{1}{2}a^2(\frac{\partial^2 \varphi(p)}{\partial p^2}+\frac{\partial^2 \varphi(p)}{\partial q^2}+\frac{\partial^2 \varphi(q)}{\partial p^2}+\frac{\partial^2 \varphi(q)}{\partial q^2})\\&+\frac{a}{2}\int_q^p{\frac{\partial^2 \psi}{\partial p^2}+\frac{\partial^2 \psi}{\partial q^2}{\rm d}s} \end{aligned}\\ \frac{\partial u}{\partial x}=\frac{1}{2}(\frac{\partial \varphi(p)}{\partial p}+\frac{\partial \varphi(p)}{\partial q}+\frac{\partial \varphi(q)}{\partial p}+\frac{\partial \varphi(q)}{\partial q})+\frac{1}{2a}\int_q^p{\frac{\partial \psi}{\partial p}+\frac{\partial \psi}{\partial q}{\rm d}s}\\ \begin{aligned} \frac{\partial^2 u}{\partial x^2}=& \ \frac{1}{2}(\frac{\partial^2 \varphi(p)}{\partial p^2}+\frac{\partial^2 \varphi(p)}{\partial q^2}+\frac{\partial^2 \varphi(q)}{\partial p^2}+\frac{\partial^2 \varphi(q)}{\partial q^2})\\&+\frac{1}{2a}\int_q^p{\frac{\partial^2 \psi}{\partial p^2}+\frac{\partial^2 \psi}{\partial q^2}{\rm d}s} \end{aligned} \end{gathered} \]

对比可以得到 \[ \frac{\partial^2 u}{\partial t^2}=a^2\frac{\partial^2 u}{\partial x^2} \] 5. 解:(1) 因 \(\dfrac{\arctan x}{x},\dfrac{1}{\sqrt{1-x^2} }\) 均为 \(C^1\) 上的函数,因此有 \[ \begin{aligned} \int_0^1{\dfrac{\arctan x}{x}\dfrac{1}{\sqrt{1-x^2} }{\rm d}x}&= \int_0^{\frac{\pi}{2} }{\rm d}\theta{\int_0^1{\frac{1}{1+y^2\sin^2\theta}{\rm d}y} } \qquad (x=\sin\theta)\\ &=\int_0^1{\rm d}y\int_0^{\frac{\pi}{2} }{\frac{1}{1+y^2\sin^2\theta}{\rm d}\theta}\\ &=\int_0^1{\frac{\pi}{2\sqrt{y^2+1} }{\rm d}y}\\ &=\frac{\pi}{2}{\rm arsinh \ }y|^1_0\\ &=\frac{\pi}{2}{\ln(1+\sqrt{2})} \end{aligned} \] (2) 因 \(\displaystyle \frac{x^b-x^a}{\ln x}=\int_a^b{x^y{\rm d}y}\) ,而 \(x^y,\sin\ln x\) 都是 \(C^1\) 上的函数,因此有 \[ \begin{aligned} \int_0^1{\frac{x^b-x^a}{\ln x}\sin(\ln{\frac{1}{x} }){\rm d}x} &=\int_0^1{\rm d}x{\int_a^b{-x^y\sin\ln x}{\rm d}y}\\ &=-\int_a^b{ {\rm d}y{\int_0^1{x^y\sin\ln x{\rm d}x} }}\\ &=\int_a^b{\frac{1}{(y+1)^2+1}{\rm d}y}\\ &=\arctan(b+1)-\arctan(a+1) \end{aligned} \]

讲义习题4.1

1. 解: \(\forall{\varepsilon>0},\exists N>0,\forall {N_1,N_2>N},\forall x \in [a,b],f_{N_1}(x)-f_{N_2}(x)<\varepsilon\) 。其中 \(f_i(x),i\in \mathbb{Z^+}\) 是可积函数。

下证这个条件下题式成立。由于 \[ \forall \varepsilon>0,\exists N>0,\forall {N_1,N_2>N},\forall x \in [a,b],|f_{N_1}(x)-f_{N_2}(x)|<\frac{\varepsilon}{b-a} \] 所以 \(\lim \limits_{n\to +\infty}{f_n(x)}\) 存在,且 \[ |\int_a^b{f_{N_1}(x){\rm d}x}-\int_a^b{f_{N_2}(x){\rm d}x}|{\leq} \ \varepsilon \]\(\displaystyle\lim\limits_{n\to +\infty}{\int_a^b{f_n(x){\rm d}x} }\) 也存在。且因对 \(\forall \varepsilon>0,\exists N>0,\forall {M>N}\)\[ |\int_a^b{f_M(x){\rm d}x}-\lim\limits_{n\to +\infty}{\int_a^b{f_n(x){\rm d}x} }|\leq\frac{\varepsilon}{2} \] \[ |\int_a^b{f_M(x){\rm d}x}-{\int_a^b{\lim\limits_{n\to +\infty}f_n(x){\rm d}x} }|\leq\frac{\varepsilon}{2} \]

\(\displaystyle|\lim\limits_{n\to +\infty}{\int_a^b{f_n(x){\rm d}x} }-{\int_a^b{\lim\limits_{n\to +\infty}f_n(x){\rm d}x} }|\le\varepsilon\) ,令 \(\varepsilon\to 0\) ,题式得证。

2. 解:对 \(f(x,y)=\dfrac{2xy^2}{(x^2+y^2)^2}\) ,有

  1. \[ \int_0^1{f(x,y){\rm d}x}=\int_0^1{\frac{y^2{\rm d}(x^2)}{(x^2+y^2)^2} }=-\frac{y^2}{x^2+y^2}|_0^1=\frac{1}{y^2+1} \]

  2. 显然有 \[ \lim\limits_{y\to0}{f(x,y)}=0 \] 但对 \(\forall\varepsilon>0,\forall\delta>0,\forall y\in(0,\delta),\exists x\in \mathbb{R}\)\[ f(x,y)=\frac{2xy^2}{(x^2+y^2)^2}\geq{\dfrac{2x}{y^2} }\geq\varepsilon \quad {\rm when} \quad \dfrac{y}{2}\leq x\leq y\le\min\{\dfrac{1}{\varepsilon},\delta\} \] 因此该收敛对 \(x\) 不是一致的。

  3. \[ \lim\limits_{y\to0}{\int_0^1{f(x,y){\rm d}x} }=\lim\limits_{y\to0}{\frac{1}{y^2+1} }=1 \]\[ \int_0^1{\lim\limits_{y\to0}f(x,y){\rm d}x}=\int_0^1{0{\rm d}x}=0\ne\lim\limits_{y\to0}{\int_0^1{f(x,y){\rm d}x} } \]